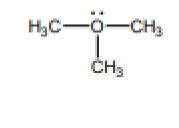
	INDIAN	SCHOOL AL WADI AL KABIR		
Class: XI	Department: SCIENCE 2022 – 23 SUBJECT: CHEMISTRY		Date of submission: 30.10.2022	
Worksheet No: 04 WITH ANSWERS	Chapter: CHEMICAL BONDING AND MOLECULAR STRUCTURE		Note: A4 FILE FORMAT	
NAME OF THE ST	TUDENT	CLASS & SEC:	ROLL NO.	

Questions 1 – 4 are paragraph-based questions.


The attractive force which holds various constituents (atoms, ions, etc.) together in different chemical species is called a chemical bond. Kossel and Lewis were the first to provide some logical explanation of valence which was based on the inertness of noble gases. Lewis postulated that atoms achieve the stable octet when they are linked by chemical bonds. In the formation of a molecule, only the outer shell electrons take part in chemical combination and they are known as valence electrons. The inner shell electrons are well protected and are generally not involved in the combination process. G.N. Lewis introduced simple notations to represent valence electrons in an atom. These notations are called Lewis symbols.

- 1. ... in 1916 developed an important theory of chemical combination between atoms known as electronic theory of chemical bonding.
 - a. Kössel
 - b. Lewis
 - c. Both a) & b)
 - d. Sidgwick
- 2. In the formation of a molecule, only the outer shell electrons take part in chemical combination and they are known as ...
 - a. Kernel
 - b. valence electrons
 - c. Primary electrons
 - d Secondary electrons

3. In the CH₄ molecule there are ... valence electrons available for bonding.

- a. 4
- b. 6
- c. 8
- d. 10

- 4. The type of bond between atoms in a molecule of CO_2 is
 - a. Ionic bond
 - b. Metallic bond
 - c. Hydrogen bond
 - d. covalent bond.
- 5. sp^3d^2 hybridization is present in SF₆, find its geometry
 - a. octahedral geometry
 - b. square planar geometry
 - c. tetragonal geometry
 - d. tetrahedral geometry
- 6. Find the molecule with the maximum dipole moment
 - a. CH₄
 - b. NH₃
 - $c. CO_2$
 - d. NF3
- 7. Find the pair with sp^2 hybridisation of the central molecule
 - a. NH₃ and NO_2^-
 - b. BF₃ and CH₄
 - c. BF_3 and NO_2^-
 - d. NH_2^- and H_2O
- 8. What is the formal charge on oxygen in the following structure?

b. -2 c. -1

a. +1

- d. 0
- 9. The correct decreasing order of boiling points of the following compounds is
 - a. $HF > H_2O > NH_3$ b. $H_2O > HF > NH_3$ c. $NH_3 > HF > H_2O$ d. $NH_3 > H_2O > HF$

Assertion Reason type

10. Assertion (A): Though the central atom of both NH₃ and H₂O molecules are sp³ hybridised, yet H–N–H bond angle is greater than that of H–O–H.

Reason (**R**): This is because nitrogen atom has one lone pair and oxygen atom has two lone pairs.

- a. A and R both are correct, and R is the correct explanation of A.
- b. A and R both are correct, but R is not the correct explanation of A.

c. A is true but R is false.

d. A and R both are false.

11. Assertion (A): ClF₃ has a bent T shape.

Reason (**R**): It has two lone pairs arranged at 180°.

a. A and R both are correct, and R is the correct explanation of A.

b. A and R both are correct, but R is not the correct explanation of A.

c. A is true but R is false.

d. A and R both are false.

2 Marks

12. What is the total number of σ and π bonds in the following molecules?

a. C_2H_6 b. C_2H_4 c. HCOOH d. CH_3COOH

13. Account for the following

a. The bond dissociation enthalpies of O-H bonds in H₂O are not the same.

- b. The double bond in C₂ molecule consists of π bonds.
- 14. Amongst the following compounds, which do not obey the octet rule and why? a. H_2O b. PCl_5 c. H_2SO_4 d. BeF_2
- 15. Arrange the following in the increasing order of bond length. C_2 , C_2^- , C_2^{2-}
- 16. Using the concept of hybridization explain the structures of PCl₅ and SF₆.
- 17. CO₂ and SO₂ are triatomic molecules. Do they have the same dipole moment? Justify your answer.
- 18. When a magnet is lowered in liquid oxygen, some O₂ stick to it. No such behaviour is observed with liquid N₂. Explain.

<u> 3 Marks</u>

- 19. Draw the Lewis dot structures for a. H₂SO₄ b. PCl₃ c. H₂S
- 20. Which is more covalent? a. NaCl or MgCl₂ b. NaF or NaI c. HgCl₂ or CaCl₂
- 21. a Label the covalent radius and van der Waals radius (99 and 180 pm respectively) in the diagram of a chlorine molecule.
 - b. Which species of each group is predicted to have the strongest bond? i. O_2 , F_2 , N_2 ii. H_2 , H_2^- , H_2^+ iii. N_2 , N_2^+ , N_2^-

<u>5 Marks</u>

22. Complete the table

Molecule	Bond pairs	Lone pairs	Geometry	Shape	Hybridisation
CH ₄					
NH ₃					
SF_6					
BrF5					
H ₂ O					
PF ₅					
BCl ₃					

23. Give reasons for the following statements

a. The C-C bond length in ethane is 154 pm whereas in ethylene it is 134 pm.

- b. H_2O is a liquid whereas H_2S is a gas.
- c. PCl₅ is a reactive molecule.
- d. The O- O bond lengths in O_3 are the same.
- e. BF₃ is a non-polar molecule.

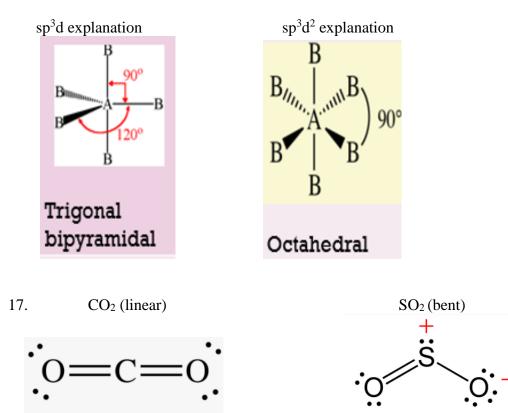
<mark>Answer key</mark>

- 1. c
- 2. b
- 3. c
- 4. d
- 5. a 6. b
- 0. 0 7. c
- 7. c 8. a
- 9. b
- 10. a
- 11. c
- 12. a. 7 σ bonds, 0 π bond
 - b. 5 σ bonds, 1 π bond
 - c. 4 σ bonds, 1 π bond
 - d. 7 σ bonds, 1 π bond
- 13. a. Due to difference in the chemical environment.

b. This is because of the presence of four electrons in two pi molecular orbitals.

14. b, c, d

15. C₂

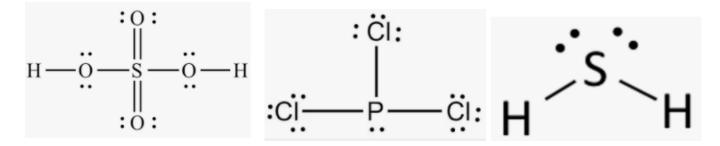

$$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p_x^2 = \pi 2p_y^2)$$

B.O = $\frac{1}{2} (8-4)$
= 2

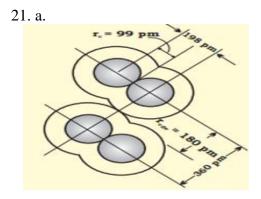
$$\begin{aligned} C_{2}^{-} & (\sigma^{*}1s)^{2} (\sigma^{*}2s)^{2} (\sigma^{*}2s)^{2} (\pi 2p_{x}^{2} = \pi 2p_{y}^{2}) (\sigma^{2}pz^{1}) \\ B.O &= \frac{1}{2} (9-4) \\ &= 2.5 \end{aligned}$$

$$\begin{aligned} C_{2}^{2^{-}} & (\sigma^{*}1s)^{2} (\sigma^{2}s)^{2} (\sigma^{*}2s)^{2} (\pi 2p_{x}^{2} = \pi 2p_{y}^{2}) (\sigma^{2}pz^{2}) \\ B.O &= \frac{1}{2} (10-4) \\ &= 3 \end{aligned}$$
Increasing bond length
$$C_{2}^{2^{-}} < C_{2}^{-} < C_{2} \end{aligned}$$

SF₆.


No, they don't have the same dipole moment. In CO₂, the dipoles cancel out and hence have zero dipole moment.

18. O_2 is paramagnetic (due to unpaired electrons). N_2 is diamagnetic (due to paired electrons) Electronic configurations of N_2 and O_2 .


19..

a. H_2SO_4	b. PCl ₃
--------------	---------------------

 $c. \ H_2S$

20. a. MgCl₂, Mg²⁼ - smaller cation, greater charge- greater polarizing power.
b. NaI- I⁻ larger anion, greater polarisability
c. Hg²⁺, transition element -greater polarizing power.

b.

 $i. N_2$ ii. H₂ iii. N₂

22. Complete the table

Molecule	Bond pairs	Lone pairs	Shape	Hybridisation
CH ₄	4	0	Tetrahedral	sp ³
NH ₃	3	1	Trigonal pyramid	sp ³
SF ₆	6	0	Octahedral	sp ³ d ²
BrF ₅	5	1	Square pyramid	sp ³ d ²
H ₂ O	2	2	Bent	sp ³
PF ₅	5	0	Trigonal bipyramid	sp ³ d
BCl ₃	3	0	Trigonal planar	sp ²

- a. Ethane is single covalent bonded, sp³ hybridised. Ethene is double bonded, sp² hybridisation, Thus shorter bond length.
- b. H_2O molecules are associated to each other using strong H bonds. Since associated they are in liquid state. In H_2S there is no H bond.
- c. Axial bonds are longer and weaker than equatorial bonds.
- d. Resonance, partial double bond character
- e. The resultant of 1st and 2nd dipoles cancel out the third dipole.

Prepared by: Ms. Jasmin Joseph	Checked by: HOD - SCIENCE
--------------------------------	---------------------------